INNOVATIVE TECHNOLOGIES for water treatment: Water reuse issues

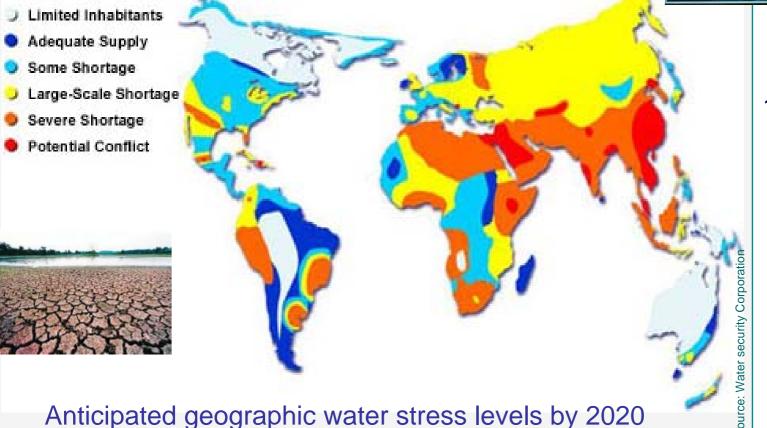
Cost/benefit analysis of the available and planned technologies

Patrick CHANTRE Calédonienne Des Eaux Suez Environment

Wednesday, May 28, Nouméa

Outline

- Introduction: Drivers of Water Reuse
- Technical Challenges in Closing Water Cycle by Water Reuse
- Examples: What is the Best Technology for a Given Water Reuse Application?
- Conclusions: Costs, Benefits and Keys of Success of Water Reuse



Main drivers of water reuse

Increased water demand

Reduced water availability

1999 ⇒ 2025

Moderate or
high water
stress:
- 2/3 of
the world's
population

Main drivers of water reuse

- 1. Wastewater management needs
- 2. Environment protection,

- 4. Public awareness & politic pressure:
 - Increase in drinking water price
 - Sustainable development
- > Water reuse is included in several state/national policies: Australia, California, Florida, Hawaii, Israel, Japan, Singapore, ...
- More and more regulations introduce requirements for water reuse: volume,
 %, given types of reuse as golf courses, high-rise buildings or industry

Solution?

ptegrated resource management

Water reuse challenges

Economic
Costs of construction and operation
in macro-economic scale

Financial

Price and market value of the services

Socio-psychological Public acceptance and education


Regulatory Standards and regulations

Organisational Administrative structure

Technical

Main technical challenges

- ① Variability
- ② **Contaminants** (Ammonia, bacteria, trace organics, etc.)
- 3 Salinity (TDS)
 - ④ Emerging parameters

- 1 Water quality control
 - ② Scale, fouling and corrosion control
- 3 Best reuse practices

- 1 High performances
- 2 Economic viability
 - ③ Best available technologies
 - Redundancy

Risk management : science & engineering

R&D & Technical grant of Guez Environment

UK-Langford/ Northumbrian Group

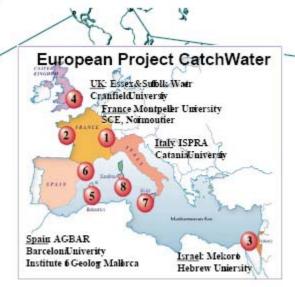
Application: Indirect Potable Reuse

R&D: Advanced Treatment/ Endocrine disruptors/ Environmental Impacts

DORE (CIRSEE). France R&D: Water quality contro/ Treatment systems

Bolivia / Aguas de Illimani

Applications: Irrigation Techniques: Red beeds


R&D: Capex/Opaex optimization, Disinfection

West Basin / WBMWD and United Water

Application: aquifer recharge, irrigation, industrial uses

R&D: - UV/ Aquifer recharge/Trace organics/Quality in distribution network

Spain / AGBAR

Applications: Irrigation and aquifer recharge

R&D: - Treatment lines including Infiltration-percolation, UV, ozone

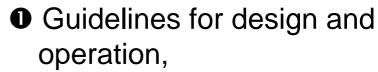
- membranes (MF/RO, MBR)
- cost optimisation

Science and Know-how management

Development of best practices and guidelines

Wastewater

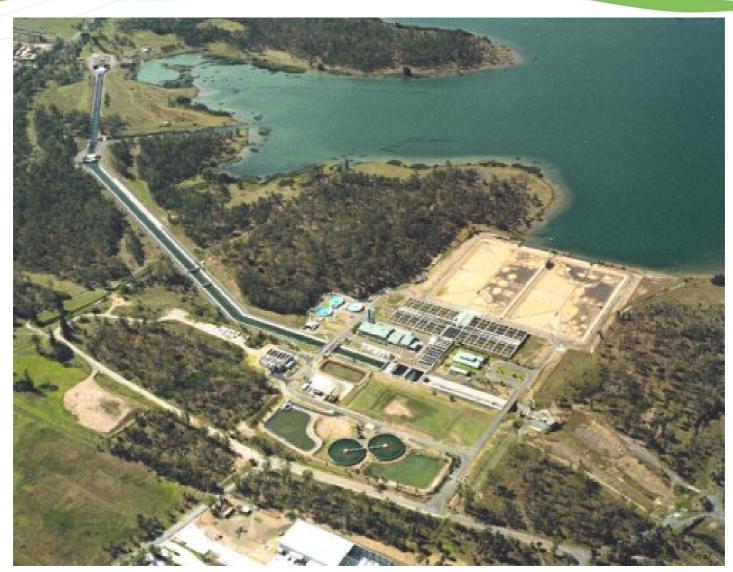
Critical step for health protection



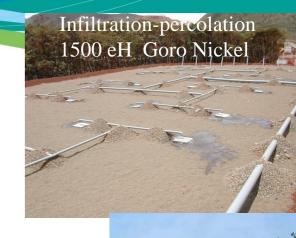
Best practices of irrigation with recycled water.

Operation: Goals & challenges

- 1. Support client's goal
- 2. Provide technical assistance & R&D support
- 3. Safely/reliably & cost effectively process operation
- 4. Operability 24 hrs & 365 days a year


5. Suggest innovative uses of high-quality recycled water

Best technologies for a given use?



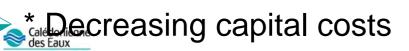
Non conventional technologies

- Applications: Irrigation (agriculture, landscape)
- Target for disinfection: <1000 FC or E.coli/100 mL
- Optimum size: small to medium treatment facilities
- Main advantages: Low operation costs and ease of operation

Conventional tertiary treatment

- Applications (non-potable uses)
 - ✓ Landscape irrigation
 - ✓ Urban uses
 - ✓ Industrial uses
- Targets for disinfection:

Noosa Waste Water Treatment Plant, Noosa Heads, Queensland				
Project	Waste Water Treatment Plant			
Client	Noosa Council			
Contract	Develop, Build and Operate			
Completed	1997			
Contract Period	25 years			
Estimated Population Served (EP)	45,0000			
Plant Capacity	18ML/day Average Dry Weather Flow (Stage 2)			



Membrane treatment

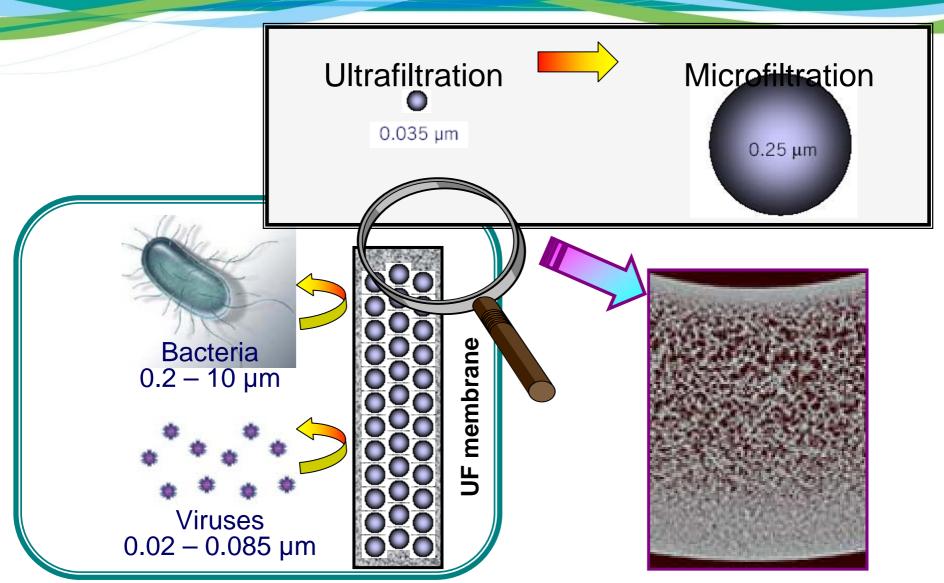
High growth and demand for membrane systems

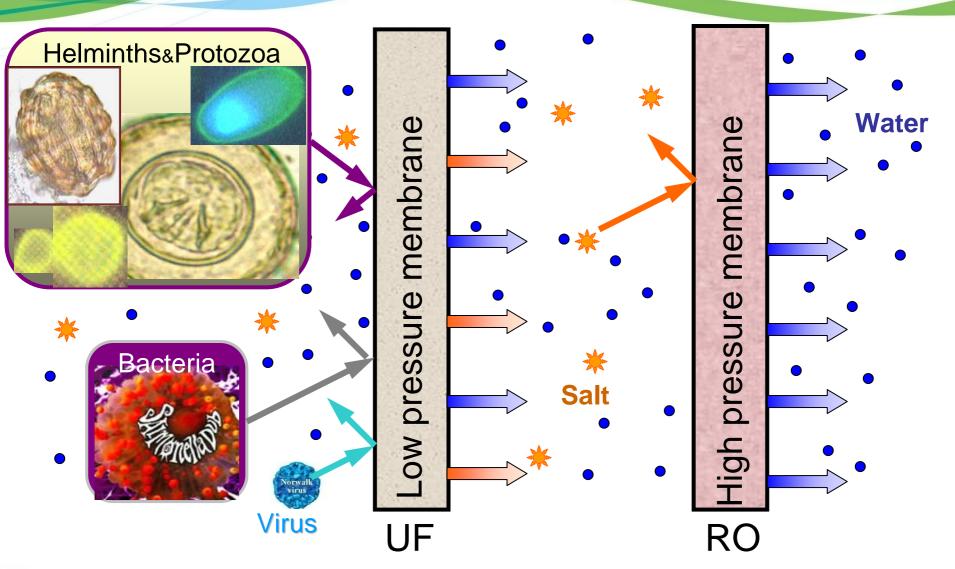
- * Physical barrier for microorganisms
- * Improved removal of priority substances and emerging parameters
- * Small land footprint
- * Fully automated
- * Numerous proved technologies

Membrane treatment and repurification

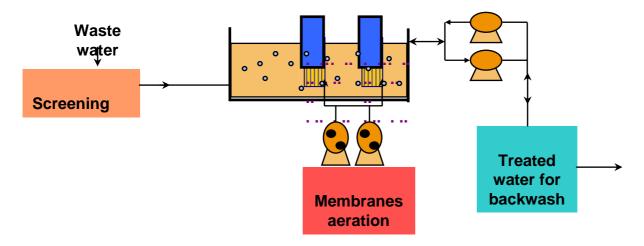
Applications

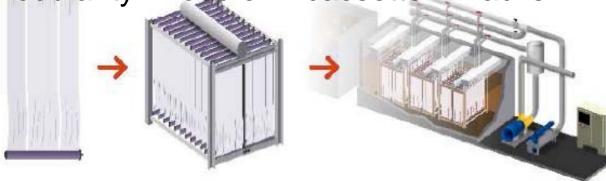
- ✓ Unrestricted urban uses
- ✓ Indirect potable reuse/Aquifer recharge
- ✓ Industrial uses
- Targets for disinfection
 - √0 to <200FC/100 mL)
- Other Targets
 - ✓ Trace organics, emerging parameters, desa




Disinfection efficiency of ultrafiltration

Membrane coupling





Principle of operation of tertiary

Filtration / cleaning cycles based on the following scheme:

Modularity: module
 cassette
 racks

Urban water reuse in Bora Bora

ENVIRONMEN

Sprestine area preservation WWTP

- Health security for treated water reuse on dust road
- Treated effluent quality guarantee for reuse

Paramètres	Eau Brute	Boues activées conventionnelles	CYCLOR	Biofiltration	ULTRAFOR
DBO5 (mg/l)	200-300	5-6	4-5	5-6	3
DC0 (mg/l)	550	55	45	55	30-35
N.NH4 (mg/l)	35-50	1	1	1-2	1
N Total (mg/l)	50-70	10	10	10	7
MES (mg/l)	250-300	15-25	5-10	10-15	< 2
Pt (mg/l)	10-15	1	1	1	0,5
Turbidité (NTU)		8-12	5	6-10	0.5

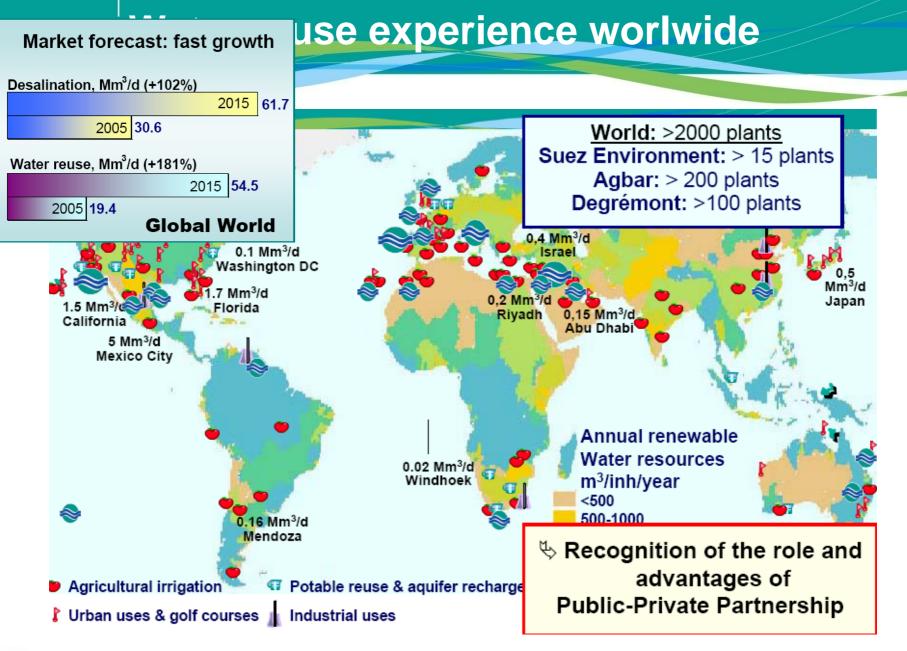
Goro Nickel 1500 ep WWTP

o BRM = answer to prestine area preservation

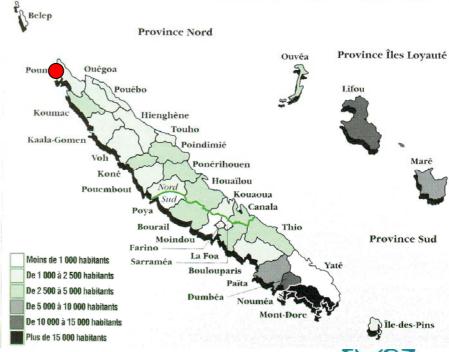
Watering standards achievement

	Classical	UF	
Helminthe eggs	Partial removal without sand filter	Total removal	
Tot Coli	1,5 to 2 log	> 4 log	
Fec Coli	1,5 to 2 log	> 3 log	

Recycled water end-users


- * Luxury hotels, mostly landscape irrigation
- * Boat washing
- * Civil engineering
- * Fire protection

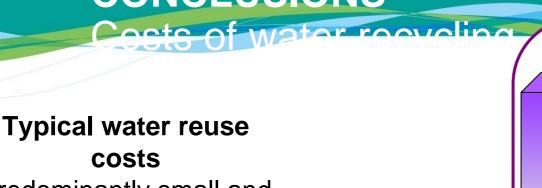
* Agricultura

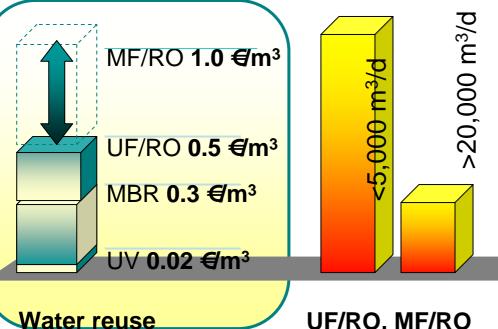


Desalination: Potable water with reverse osmosis (140 m3/d) for Malabu Hotel, New Caledonia

Desalination: Perth, Australia

o Capacity: 150 000 m3/d


ONG MARS 2 x 5 Tons/day



CONCLUSIONS

Predominantly small and medium size projects <5,000-40,000 m³/d

Existing plus small and medium size projects

Recent bids for large projects 30,000-280,000 m³/d

Desalination

2.5-10 **€**m³

0.86 **€**m³

0.45 **€**m³

UF/RO, MF/RO MBR

CONCLUSIONS

Panefits of water requaling

- Alternative resource
 - ⇒ Reliable, secure and drought-proof water source
 - ⇒ Fast and easier implementation than new freshwater supply (high value for Islands)
- Water conservation
 - ⇒ Saving of high quality freshwater water for potable water supply (high value in tourist areas)
- Environmental value
 - ⇒ Reduced pollutant discharge (beaches, lagoons)
- Economic value
 - ⇒ Avoided costs for new freshwater resources development, transfer and pumping (water transfer, new desalination plants, etc.)
 - Secondary economic benefits for customers and industries
 - ✓ for example in 2005 in Bora Bora, 2-3 M€ saving for construction companies and hotels thanks to the supply of recycled water

CONCLUSIONS

Water recycling keys success

- o **Strong support** by local authorities & end-users with recognition of water reuse benefits,
- o Careful design & good operation for relaible production of high quality recycled water,
- o Technical know-how and R&D support,
- o Communication & public education.

