

Water Treatment

Chilean experience: ≻Water Management in the Mining Industry

Mining in Chile

Essential economic activity:

- High comparative advantages in developing this activity
- Historical activity (The Northern region of the country)
- Currently, the main governmental income
- A high profitable activity
- The importance and progress reached by the mining is fundamentally based on :
 - Resources quality, mineral reserve's size y and location
 - The legal frame, that promotes certainty, stability, and safety in the mining activity
 - The appealing opportunities for foreign investment
 - The mining managing capacity, ideal human resources in the operation and service functions.
 - The energy infrastructure and the means of communication by land and sea.

Mining in Chile: the facts

- □ Chilean production of copper:
 - 35,2% of global copper mine production (1st)
 - 12,2% of global copper smelter production (3rd)
 - 16,1% of global copper refines production(2nd)
- □ Also an important producer of gold (1,9% world production) and silver (8,5% world production)
- □ Mining activity:
 - 7,5% of GDP 2003 constant prices and 23% of GDP current prices. ("Central Bank of Chile", 2006)
 - Copper activity: 6,2% of GDP 2003 constant prices and 21,6% of GDP current prices (2007)
 - 54% of exports value (FOB, "2006 Annual report of Environmental situation")
 - 51,5% of national mining investment (2006)
 - CODELCO (copper industry) provide a 22.1% of total fiscal revenue. (2006)

□ High prices

Since 2002 the international copper price has rise a 335% (US\$ 0,76 to US\$3,05 the pound)

Mining in Chile: Geography

- Mineral deposits located in arid zones.
- The country middle-north regions concentrate the 99% of the exploited mines.
 - North region: dry deserts, steppe; y Middle region: mild climate.
 - Regions II y III, features the highest mine exploitation / water availability relation.
 - High mine activity and lack of water.
- Plenty of water, but not for mining
 - Water availability for the entire country : 15.000 (daily liters per habitants), the Latin-American highest.
 - Only 220 are used by the mining industry

Mining activity in Chile: Production

Metallic minerals:

- Iron, copper, molybdenum, silver, gold, zinc and magnesium exploitation.
- Copper and iron concentrated most of the 90% of extraction.
- High productive activity
 - Great importance as a GDP percentage and exports.
 - Projection: A rise in the mineral extraction in mine that are already use and an increment of new projects.

□ Integral mining activity

- Most of mines had a metal processing plant nearby and a melting plant.
- □ Water
 - Scarce resource: Mining activity are made in desert regions.
 - Important input:
 - Fundamentally extracted of underground water napes.
 - Ground water represents minor sources
 - Water consumption has increase the last years.

Water demand for Mining

•I to IV regions: The most important regions for mining activity, and the most deserted ones.

Mining activity in Chile: the use of water usage in the productive process

- Human consumption in camps
 - Usage: drink, washing, irrigation, bathing y feeding.
 - Represents between the 1% and the 1,5% of the whole water consumption.
- □ Mine consumption
 - Usage:
 - Open pit mines: To reduce the road's suspension dust.
 - Underground mines: Little consumption. The problem is to extract filtered water from the ground
- Minerals processing plant
 - It is use in the minerals' milling, crushing, floating (see next point), classification and thickening process
 - The rates of water recovering vary between 30 and 85%, depending of the mineral and the plant. Because the evaporation and ground absorption, there is a great water waste unutilized in the rest of the process.
 - In this stage is possible to reduce the water consumption in the most quantity, potentially.

Continuation, Mining activity in Chile...

Flotation: In this stage the mineral is separated from the wastes.

- The mineral float and the waste don't. this depends of the mineral.
- The sewages are conducted to Water Residual Dumps (represents the 95% of water consumption for a plant)
- The Waste Residual Dumps' water traditionally doesn't use for agricultures purposes, but there are cases in which they do.
- □ The raw mineral or mineral concentrate transport
 - There are two ways of mineral transport:
 - Trucks and trains: In this process the water spend depends is use for human consumption, the oil refinery and production, and maintenance. The water spend depends of the distance to the plant.
 - Mineroducto: The water consumption is least, because not depends of the distance between the mine and the plant.
 - Isn't much utilized
 - Represents between the 4 y 6% of total water spend.
- □ Smelting plants
 - Usage: gas chill, oxygen production y gas wash.
 - Represents the 26% of water consumption..
 - The spend may vary by the plant location: A plant near the coast, can use and return almost the whole sea water after the process.
- □ Electrolytic Refinery
 - Specially in the copper industry in this process the water permits the impureness elimination.
 - There is a lot of water waste in the solutions dilution and evaporation process.

Legal Framework: Water Usage Rights

- Water Code
 - Establish tradable Water rights for water usage.
 - □ The right owner has the right to use the water stream.
 - The rights are given by the Government
 - The State only has a subsidiary, promoter and regulatory role.
 - Regulate the water rights correct use.
 - Guaranteed all the basics service related to water.
 - Regulate the rights ownership and transaction.
 - Imposes ecologic and environmental norms.
 - Code's fails
 - Very few agents poses a major percentage of the rights.
 - □ The legal changes seek solve this trouble.
- Institutions
 - The Sanitary Service Superintendence (SISS) y National Environment Corporation (CONAMA), control the environmental impacts.
 - Water General Department (DGA), control and register the water rights use, and solve the common interest problems.

Mining activity in Chile: The conflict

Environmental Impact

- Of great importance due to the mining activity size.
- Of high impact to the water resource.
 - □ High participation degree of water in productive process.
 - Lack of water in the extraction and processing zone.
- Until 2005 the ecologic norm about water contamination are too week.
- Rivalry of water resource
 - Fundamentally with:
 - Agriculture
 - Human Consumption
 - Interest concentration and economic power is bigger in the mining industry relative to the agriculture and domestic interests.
 - Least benefits agents
 - Bigger Politic and economic power
 - There isn't and integrated management of the water basin, seeking the whole involve activities development: the water right rules.

"IIIIICase Analysis: "Pascua Lama"

- Gold and silver mine project.
 - Open pit mine
 - Located in the Andes chain Mountain, east frontier with Argentina.
- □ US\$ 1.700 investment.
- □ Initial duration for extraction of 20 years.
- □ Three glaciers are affected by the exploitation.
 - There are of fundamental importance for water supply in the Huasco valley.
 - For human consumption and, fruits, "pisco" and wine production.
 - The project was rejected by the ecologic communities and the environmental authority. Do not approve the environmental impact studies.
- Exploitation Alternatives: costs rising
 - Glacier movement (rejected)
 - Underground exploitation (water contamination risk)
- □ Project approve :
 - With the condition to not move, modify and contaminate the glaciers.
 - But still persists problems of premature melting of glaciers because of mining activity.

Water Rights in practice

Public Choice problems

Mining

- They had the most water rights for the resource use in the mine exploitation and metal manufacturing zone
- Are an important activity to the region and the country
- They are only a few companies and had legal representation.

Agricultures and citizens

- Are a small number, they hasn't legal representation, must pay to the rights owners fro water consumption.
- Until 2005 there isn't exist a relation between ground and underground water flows. Those are connected and utilized of different usages.

Water Rights in practice

- Water rights mobility from small agricultures to great mining companies.
- Lack of authority's concrete control faculties.
- Rivalry problems for the water resource:
 - I, II and III region: Desert Zone where an excess of water demand is present. The main conflict here is between the domestic consumption and the mining companies
 - IV, XIII and VI region: Temperate Zone favorable to agriculture. The water demand for mining purposes compete with agricultural irrigation.

Challenges and projections

- Recently (2005) a modification to de Water Code (1980) had been promulgated
 - The changes were made in order to:
 - Promote the water resource's exploitation and utilization. The water rights owner got to pay a fee if they not use the resource.
 - Increment the environmental requirements and set priority parameters for the water right's use
- Basin Integrated Management
 - The objective is manage the hydrographic basin in a integrated way in order to preserve the water resource and adjacent ecosystems
 - The objectives are many
 - Environment protection
 - Resource preservation: Ground, forest, water, etc.
 - It has been implemented only in preservation and protection projects
 - A project who deals with the coexistence of many and opposite economics activities hasn't been implemented yet.
 - No project who has the regulation of water rights possession or the demand of water stability for different activities as a main feature has been presented.