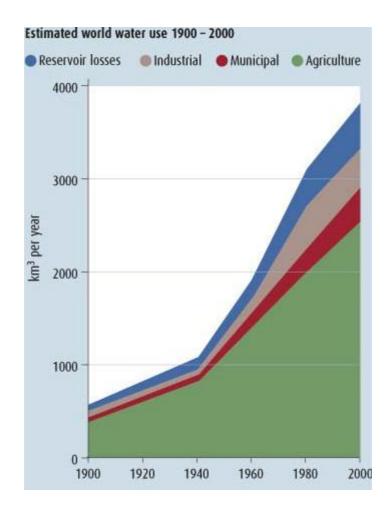
Water Resources and International Trade

Rob Scollay APEC Study Centre University of Auckland

How is Water Traded Internationally?


• Direct Trade

- E.g. bottled, bulk water
- Limited

- Indirect Trade
 - Trade in "virtual" or "embedded" water
 - Water required for production of each good/service (water content)
 - "Water footprints"
 - Much more significant than direct trade

Dimensions of Virtual Water Trade The Link to Agriculture

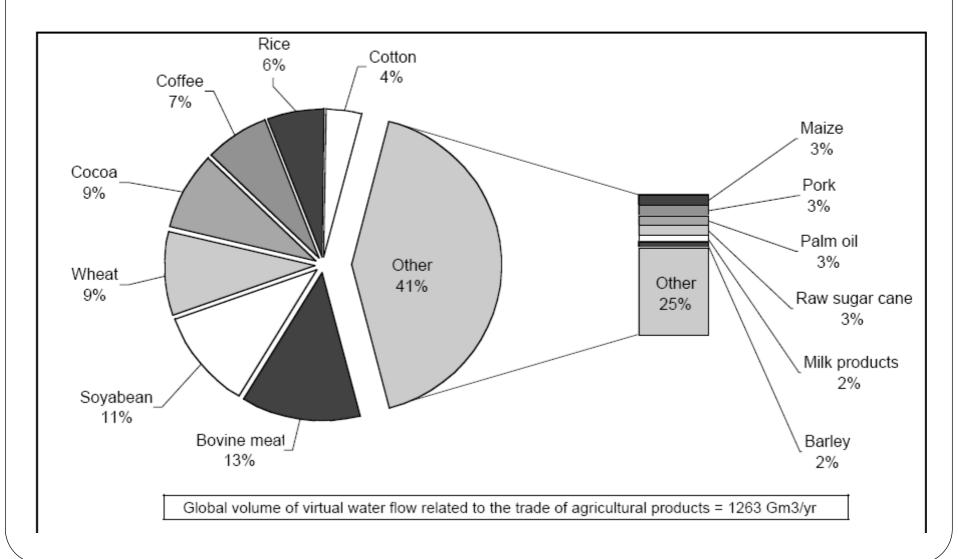

- Agriculture is the largest user of global water resources
- Approximately 1250m3 of water (blue water basis) used in agriculture is traded each year
 - One third of all water used in agriculture in a year
 - 15% of all water used on earth (including soil water)
- Wide variation in water content of agricultural products

Table 1: Virtual Water Content of ProductsPresentation - HOEKSTRA, p.4ff

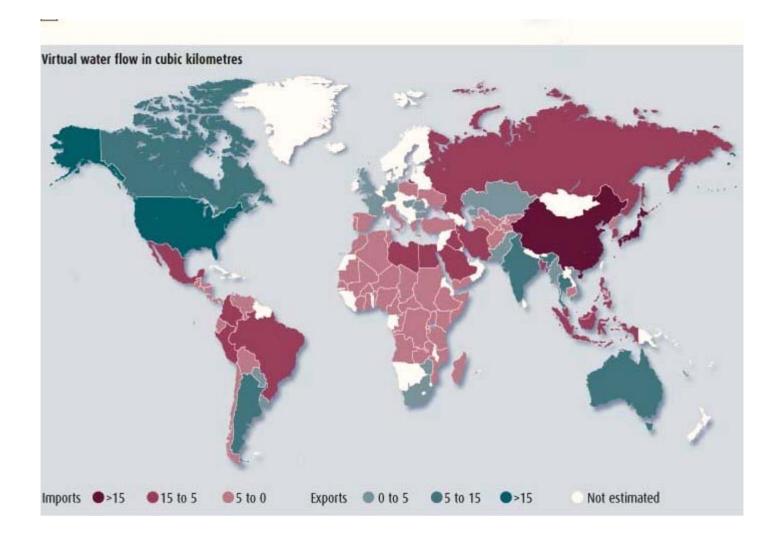

1 kg wheat	1 m ³	
1 kg rice	3 m ³	
1 kg milk	1 m ³	
1 kg cheese	5 m ³	
1 kg pork	5 m³	
1 kg beef	15 m ³	
1 cotton T-shirt	4000 I	
1 hamburger	2500 l	
1 cup of coffee	140 l	
1 glass of beer	75 l	
1 slice of bread	40 I	
1 sheet of A4 paper	10 I	

Figure 4: Contribution of various agricultural products to the total sum of international Virtual Water flows Presentation – HOEKSTRA, p.8

Table 2: National Virtual Water balances (1997-2001) Presentation – HOEKSTRA, p.10

Top 5 Exporter	Gm³/yr	Top 5 Importers	Gm³/yr
Australia	64	Japan	92
Canada	60	Italy	51
USA	53	UK	47
Argentina	45	Germany	35
Brazil	45	South Korea	32

Virtual Water Trade and Agriculture Policy Implications

- Potential contribution of trade to rational allocation of global water resources
 - Water-abundant countries
 - Export water-intensive products
 - Water-scarce countries
 - Import water-intensive products
 - Produce products requiring less water
- Alternative policy approaches
 - Increased regulation of trade
 - Link to multifunctionality as approach to agricultural trade
 - Increased liberalisation of trade
 - Increased specialisation based on comparative advantage

Comparative Advantage and Virtual Water Trade

- Comparative advantage based on opportunity cost
- Lower opportunity costs in producing goods making intensive use of abundant factors of production
 - Abundant factors of production cost relatively less
- Higher opportunity costs in producing goods making intensive use of scarce factors of production
 - Cost of scarce factors of production relatively higher
- Suggests
 - specialisation in water-intensive products by water-abundant regions/countries
 - water-scarce regions/countries specialise in products requiring less water

Obstacles to Comparative Advantage as Basis for Global Allocation of Water Resources

- Requires abundance/scarcity of water signalled to producers via cost of water
 - Capacity of trade to promote efficient allocation of global resources linked to efficient resource allocation at global/regional level
- Water only one of many resources
 - Signals from cost of water may be submerged by impact of prices of other factors of production
- Political economy of adjustment
 - Producer resistance to increase in cost of water
- Food security concerns
 - Highlights importance of disciplines or export controls as well as import controls

Some Optimistic Empirical Evidence?

- Analysis (2006) by GEM at Sciences Po on Euro-Mediterranean Water Trade in 3 products
 - Increasing trade liberalisation among partners associated with increasing efficiency in water allocation
 - With full liberalisation between the partners
 - International trade in crops saves water
 - Virtual water flows reallocated to favour countries using rainfed agriculture Water-poor countries import food from water-rich countries and use "water savings" for other purposes (domestic, industrial, environmental)
 - Conclusion: trade liberalisation positive for allocation of water resources if:
 - Water exporters use water more efficiently in production process than importers
 - Exporters produce more intensively rain-fed crops rather than irrigated crops (relative to importers)

Food Security and Climate Change

- Increasing frequency of climatic disturbances
 Often aggs sized with large disturbances in water
 - Often associated with large disturbances in water availability
- Location and duration of disturbances unpredictable
- Open international agricultural markets facilitate adjustment

Food Security and Biofuel Production

- Dramatic "spike" in food prices 2008
- Prices have fallen since but not to former levels
- Explained by several causes including switch to biofuel production in USA and EU
 - Other factors included drought, speculation and effect of rising incomes on demand
- OECD projects continued increasing demand for biofuel feedstock (cereals, vegetable oils, sugar cane) through to 2017, based on
 - continuing high crude oil prices
 - US and EU mandates for biofuels production
- Other factors will also continue to put pressure on agricultural prices
 - especially strong growth and rising incomes