Infrastructure Finance and Economic Effect of Infrastructure Naoyuki Yoshino Dean, Asian Development Bank Institute (ADBI) **Professor Emeritus, Keio University** nyoshino@adbi.org

Various Ways to Finance Infrastructure

Subsidies from the Government: Agriculture Industrial Policy of Japan (Academic Press, 1984), Chapter 4, YOSHINO

Year	Sea Transport	Coal Mining	Small Business Textiles, etc. ^b	High Technology⁵	Agriculture, Forestry, and Fisheries	Total Subsidies
1955	3.5(5.0)	0 (0)	0.5 (0.6)	0.5(0.7)	65.7(93.4)	70.3
1956	3.2(4.9)	0 (0)	0.7 (1.1)	0. 5(0.7)	59.4(93.0)	63.8
1957	0.05(0)	0 (0)	1.9 (2.8)	0. 4(0.6)	64.2(96.3)	66.7
1958	0.04(0)	0 (0)	3.1 (4.2)	0.6(0.7)	70.3(94.8)	74.1
1959	0.5(0.6)	0 (0)	2.2 (2.6)	0.5(0.6)	81.9(96.0)	85.3
1960	1.7(1.7)	5.8 (6.0)	2.6 (2.6)	0.5(0.5)	86.1(89.0)	96.7
1961	1.5(1.3)	5.8 (5.3)	4.6 (4.2)	0.6(0.5)	95.2(88.2)	107.9
1962	1.6(1.0)	10.8 (7.2)	9.1 (6.1)	0.7(0.4)	126.2(84.8)	148.8
1963	2.1(1 .1)	18.0(10.0)	11.8 (6.6)	0.8(0.4)	146.0(81.5)	179.0
1964	10.1(4.7)	18.3 (8.5)	16.6 (7.7)	0.9(0.4)	167.5(78.3)	713.8
1965	13.6(5.5)	20.1 (8.1)	21.8 (8.8)	0.8(0.3)	190.1(76.9)	246.9
1 96 6	14.5(4.5)	24.0 (7.5)	29.8 (9.4)	1.9(0.5)	246.0(77.6)	316.7
1967	15.4(4.1)	37.7(10.1)	36.2 (9.7)	4.2(1.1)	277.0(74.5)	371.6
1968	15.7(3.7)	42.3(10.0)	39.3 (9.3)	5.5(1.3)	318.6(75.3)	422.6
1969	15.2(3.1)	69.9(14.3)	43.6 (8.9)	6.4(1.3)	351.4(72.0)	487.8
1970	15.4(2.3)	78.8(11.8)	51.6 (7.7)	7.7(1.1)	510.7(76.7)	665.2
1 971	15.6(1.9)	68.0 (8.3)	59.2 (7.2)	8.2(1.0)	664.5(81.3)	816.6
1972	16.1(1.6)	58.7 (5.9)	90.8 (9.1)	20.0(2.0)	806.0(81.2)	992.1
1973	16.1(1.4)	63.9 (5.5)	85.4 (7.4)	31.9(2.7)	952.5(82.7)	1,15 1.0
1 974	15.6(1.2)	55.2 (4.5)	103.7 (8.5)	44.5(3.6)	996.6(81.9)	1,216.8
1975	15.0(1.1)	61.1 (4.5)	129.4 (9.5)	43.3(3.2)	1,102.3(81.5)	1,352.2
1976	13.6(0.8)	58.7 (3.7)	166.4(10.7)	36.3(2.3)	1,268.8(82.1)	1,545.0
1977	11.5(0.6)	57.6 (3.2)	173.6 (9.7)	31.3(1.7)	1,514.6(84.6)	1,789.7
1978	9.5(0.4)	59.5 (2.5)	206.8 (8.9)	31.4(1.3)	1,992.3(86.5)	2,300.7
1979	5.5(0.2)	52.2 (1.9)	232.6 (8.7)	34.1(1.2)	2,345.6(87.8)	2,671.4
1980	9.5(0.3)	48.8 (1.7)	243.7 (8.6)	34.6(1.2)	2,473.8(87.9)	2,811.8
1 981	10.5(0.3)	44.4 (1.5)	249.9 (8.6)	36.3(1.2)	2,552.7(88.1)	2,895.1
1982	11.0(0.3)	48.1 (1.5)	251.0 (8.2)	37 2(1 2)	2 695 1(88 5)	3 043 7

TABLE I

Infrastructure for Manufacturing Industry

	Gross				of Whic	h	
Year	Investment in Social Overheads	Share of Industrial Infrastructure	Roads	Ports	Waste Treatment Facilities	Water for Industrial Use	Railway
1955	148.7	79.9	23.0	4.4	0	0	52 0
1956	158.1	89.8	26.4	4.4	Õ	0.2	58.7
1957	230.6	151.2	45.9	6.8	0.3	0.2	98.7
1958	292.3	229.3	133.6	8.2	0.3	0.5	87.3
1959	398.6	293.7	164.0	20.8	0.4	0.9	107.6
1960	501.0	339.3	197.6	23.5	0.6	13	116.4
1961	741.3	554.0	311.8	46.5	0.7	2.5	192.5
1962	850.9	686.4	420.6	57.4	1.1	3.8	203.5
1963	1122.8	856.7	488.0	69.7	2.7	54	205.5
1964	1248.4	931.3	580.3	80.4	4.3	7.0	251.4
1965	1457.6	1136.0	704.7	87.2	4.6	83	233.3
1966	1645.0	1348.5	876.2	111.0	3.2	8.2	350.0
1967	1858.6	1512.1	1001.1	124.0	27	6.2	378.0
1968	1965.5	1608.5	1081.0	121.6	3.0	6.6	306.2
1969	2217.4	1278.8	1254.1	154.2	3 3	7.4	200.0
1970	2565.1	1875.5	1275.3	185.1	3.6	10.1	373.0 AD1 E
1971	3010.4	2354.7	1688.1	220.0	4 4	13.4	401.5
1972	3714.7	2908.9	2055.1	267.3	84	19.4	420.0
1973	4747.5	3593.7	2439.5	326.8	16.3	23.3	797 9
1974	4831.3	3624.5	2464.6	328.0	18.6	23.5	707.0
1975	4758.7	3627.6	2507.6	316.2	23.3	23.1	790.1
1976	5522.9	3980.7	2730.2	361.2	29.9 28.0	21.4	739.U 937 1
1977	6572.3	4904.7	3399.7	412.8	34.6	24.3	1021.2
1978	8320.0	5730.0	4048.7	487.5	48.3	20.5	1130 4
1979	9967.0	6370.7	4386.8	583 4	63.5	23.0	120.4
1980	9896.1	6683.8	4756.2	579.9	66.7	23.7	1313.1
981	9850.5	6600.8	4789 4	585 9	67.1	22.0	1428.9
982	9883.2	6770.4	4982.5	591 1	66 5	21.0	1137.5
					00	17 0	1 1 1 1 1 7

TABLE II

251 ٠

Low Interest Loans by Government Banks

Fig. 5.5 Ratio of estimated reduction in interest burden to investment expenditure.

Government Support: Sea Transport and Shipbuilding

A Comparison of Benefits Arising out of Reduction in Interest Burden and Special Depreciation Schemes (%)

			Manufa	acturing		
	Total	Transport Machinery	Iron and Steel	Machinery	Sea Transport	Electric Power
· · · · · · · · · · · · · · · · · · ·		1961-197	73	· -· ··		
1. Reduction in interest burden (est.) Investment expenditure (incl. land)	1.0 (52)	6.9(85)	0.5(27)	3.6(72)	22.3(76)	5.9(94)
2. Benefits from spl. dep. schemes Investment expenditure (incl. land)	0. 95(48)	1.3(15)	1.4(73)	1.4(28)	7.2(24)	0.36(6)
Total	1.95	8.2	1.9	4.9	29.5	6.26
		1974–198	30		····	
1. Reduction in interest burden (est.) Investment expenditure (incl. land)	1.6 (73)	6.4(94)	1.6(70)	2.6(84)	17.0(81)	2.8(77)
2. Benefits from spl. dep. schemes Investment expenditure (incl. land)	0.57(27)	0.4 (6)	0.7(30)	0.5(16)	4.1(19)	0.9(24)
Total	2.1	6.8	2.3	3.1	21.1	3.7

Map of Japan from the North to the South

Economic Effect of Infrastructure Investment Regional Disparities (Manufacturing Industry)

第2次産業における社会資本の生産力効果の変化 义 1

(1) 1990年度

(出所) Nakahigashi-Yoshino (2015)

Effectiveness of Public Investment

- "Private capital/Public capital ratio" to "Marginal productivity of Public capital" -

10

ADBInstitute

Secondary Industry (Industrial Sector)

The production technology of the private sector is represented by the following production function.

$$Y = f(K_{p}, L, K_{G})$$
(1)

where Y denotes output (in value added) in the private sector. The output is produced by combining private capital stock, *Kp*, labor input, L, and infrastructure stock, K_G.

In this paper, we assume the translog production function.

$$In Y = \alpha_0 + \alpha_K \ln K_p + \alpha_L \ln L + \alpha_G \ln K_G$$
$$+ \beta_{KK} (1/2) (\ln K_p)^2 + \beta_{KL} \ln K_p \ln L + \beta_{KG} \ln K_p \ln K_G$$
$$+ \beta_{LL} (1/2) (\ln L)^2 + \beta_{LG} \ln L \ln K_G + \beta_{GG} (1/2) (\ln K_G)^2$$

$$\frac{\partial Y}{\partial K_P} = \frac{r}{p}, \frac{\partial Y}{\partial L} = \frac{w}{p}$$
(3)

where *r* denotes the cost of capital, *w* the wage, and *p* the price of product. Multiplying each equation by *Kp/Y* and *L/Y* respectively,

$$\frac{\partial Y}{\partial K_P} \frac{K_P}{Y} = \frac{\partial \ln Y}{\partial \ln K_P} = \frac{rK_P}{pY}, \frac{\partial YL}{\partial LY} = \frac{\partial \ln Y}{\partial \ln L} = \frac{wL}{pY}$$
(4)

If we assume the translog production function for equation (2), the left hand side of each equation above is obtained by taking partial derivative of equation (2) with respect to ln *Kp* and ln *L* respectively.

$$s_{K} = \alpha_{K} + \beta_{KK} \ln K_{p} + \beta_{KL} \ln L + \beta_{KG} \ln K_{G}$$
(5)
$$s_{L} = \alpha_{L} + \beta_{KL} \ln K_{p} + \beta_{LL} \ln L + \beta_{LG} \ln K_{G}$$
(6)

Marginal Productivity of Public Capital (in Japan)

$\mathbf{Period}(\mathbf{FY})$	1956 - 60	1961 - 65	1966 - 70	1971 - 75	1976 - 80	1981 - 85
Direct Effect	0.696	0.737	0.638	0.508	0.359	0.275
Indirect Effect(Private Capital)	0.453	0.553	0.488	0.418	0.304	0.226
Indirect Effect(Labor Input)	1.071	0.907	0.740	0.580	0.407	0.317
Private Capital	0.444	0.485	0.452	0.363	0.294	0.262

$\operatorname{Period}(\mathbf{FY})$	1986 - 90	1991 - 95	1996 - 00	2001 - 05	2006 - 10
Direct Effect	0.215	0.181	0.135	0.114	0.108
Indirect Effect(Private Capital)	0.195	0.162	0.122	0.100	0.100
Indirect Effect(Labor Input)	0.192	0.155	0.105	0.090	0.085
Private Capital	0.272	0.242	0.219	0.202	0.194

Thailand (Effectiveness of Infrastructure Investment)

		Private capital	Public capital						
			ouproi	Direct effect	Indirect Capital	: effect Labor			
Agriculture, fore	est, hunting a	and fishing							
	1971-1980	0.971	0.778	0.086	0.618	0.074			
	1981-1990	0.912	0.516	0.107	0.323	0.087			
	1991-2000	0.859	0.101	0.068	-0.059	0.092			
	2001-2012	0.814	-0.185	0.018	-0.293	0.090			
Manufacturing									
	1971-1980	0.710	0.526	0.191	0.111	0.224			
	1981-1990	0.623	0.426	0.163	-0.004	0.266			
	1991-2000	0.554	0.409	0.135	0.190	0.083			
	2001-2012	0.631	0.902	0.173	1.081	-0.351			

Cost-Benefits Analysis

1, Present Discount Value of Costs

 $TC = C/(1+r) + C/(1+r)^2 + C/(1+r)^3 + C/(1+r)^4$

2, Present Value of Return

TR= R/ (1+r) + R/(1+r)² + R/(1+r)³ + R/(1+r)⁴

- 3, Comparison between Costs and Benefits TR (total revenue) > TC (total costs)
- 4, If TR<TC \rightarrow increase revenue
 - \rightarrow capital injection
- 5, Viable projects (TR>TC) in the long run
 - → Increase rate of return by increasing revenues
 - → Reduction of costs
 - → Capital injection by government

Ratios of Pension Assets, Asian Development Outlook 2015

2.2.8 Ratio of pension assets to GDP in selected economies, 2013

Use of Postal Savings

Community Infrastructure

Wind power Generator Funds

Agricultural Farmer's Trust Fund

- **Start-up business finance**
- Local airport

SME Hometown Investment Trust Fund

Large Projects (highways, ports)

Pension Funds, Insurance Funds

Infrastructure Bond

Infrastructure investment for tourism

- 1, New business for tourism, fishery industries and cruise industries SMEs and Startup businesses Engine of growth ----- SMEs
- 2, Education for students
 - **Various languages**
 - **Services Sector**
 - **Maritime Sector**
- 3, Shipping Industry, Repair technology

Population Ageing of Asia

POPULATION AGING IN ASIA

PRIORITY ACTIONS >>> Investments in public services particularly health care systems and human resource development

http://www.adb.org/publications/pacific-opportunities-leveraging-asias-growth

Asian Development Bank 6 ADB Avenue, Mandaluyong City 1550 Metro Manila, Philippines Tel + 632 632 4444 Asian Development Bank Institute Kasumigaseki Building 8F, 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo Tel + 81 3 3593

5500

PACIFIC OPPORTUNITIES LEVERAGING ASIA'S GROWTH

Internal Launch of the ADB-ADBI Publication LRC 3, 9 September 2015

Case Study: Southern Tagalog Arterial Road (STAR), Philippineses

- The Southern Tagalog Arterial Road (STAR) project in Batangas province, Philippines (south of Metro Manila) is a modified Built-Operate-Transfer (BOT) project.
- The 41.9 km STAR tollway was built to improve road linkage between Metro Manila and Batangas City, provide easy access to the Batangas International Port, and thereby accelerate industrial development in Batangas and nearby provinces.

Method: Difference-in-Difference (DiD) Analysis

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Property	Property	Business	Business	Regulatory	Regulatory	User	User
	tax	tax	tax	tax	fees	fees	charge	charge
Treatment D	1.55535	0.736	1.067	0.438	1.372	0.924	0.990	0.364
	(1.263)	(0.874)	(1.316)	(1.407)	(1.123)	(1.046)	(1.095)	(1.028)
Treatment D	0.421**	-0.083	1.189***	0.991**	0.248***	-0.019	0.408***	-0.010
\times Period _{t+2}	(0.150)	(0.301)	(0.391)	(0.450)	(0.084)	(0.248)	(0.132)	(0.250)
Treatment D	0.447**	0.574***	1.264***	1.502***	0.449**	0.515***	0.317**	0.434**
\times Period _{t+1}	(0.160)	(0.118)	(0.415)	(0.542)	(0.142)	(0.169)	(0.164)	(0.167)
Treatment D	0 /07***	0.570**	1 1/0***	1 6/1***	0 604**	0.642***	0 350	0 422
×	0.497 (0.128)	(0.223)	(0 /17)	(0.482)	(0.183)	0.042	0.330	0.422 (0.158)
Period _{t0}	(0.120)		(0.417)	(0.402)	(0.103)	(0.101)	(0.271)	(0.150)
Treatment D	1 20/1**	0 387	2 256**	1 779**	1 318**	0 838*	0 959	0 107
×	(0.674)	(0.728)	(0.957)	(0.470)	(0.649)	(0.448)	(0.353)	(0.560)
Period _{t-1}	(0.074)	(0.720)	(0.007)	(0.470)	(0.0+0)	(0.440)	(0.714)	(0.000)
Treatment D	1 163*	0.336	2 226**	1 804**	1 482**	1 044**	0 941	0 247
×	(0.645)	(0.594)	(0.971)	(0.531)	(0.634)	(0.413)	(0.704)	(0.531)
Period _{t-2}	(0.0.10)	(0.001)	(0.07.1)	(0.001)	(0.001)	(0.110)		(0.001)
Treatment D	1 702*	0 450	2 785**	2 070***	1 901***	1 238***	1 732***	0 676
×	(0.980)	(0.578)	(1.081)	(0.544)	(0.630)	(0.369)	(0.598)	(0.515)
Period _{t-3}	(0.000)	(0.0.0)	((0.0.1)	(0.000)	(0.000)	(0.000)	(0.0.0)
I reatment D	•• bbb							
× .	2.573***	1.100	3.428***	2.560***	2.288***	1.509***	2.030***	0.787
Period _{t-4,}	(0.900)	(0.758)	(0.928)	(0.350)	(0.563)	(0.452)	(0.607)	(0.745)
forward		0.000**		4 = = =		1.007		4 0 40*
Construction		2.283**		1.577		1.207		1.942*
	4 4 00***	(1.172)	4 4 4 0 * * *	(1.196)	40.00***	(0.855)	40.00***	(1.028)
Constant	14.69***	-2.499	14.18***	2.230	13.66***	4.597	13.08***	-1.612
Ν.	(0.408)	(8.839) 72	(0.991)	(9.094)	(0.879)	(0.500)	(0.649)	(1.84)
\overline{P}^2	0 20	13	/9 0.27	13	٥U 0 42	13	0.26	13
N	0.29	0.41	0.37	0.44	0.43	0.50	0.20	0.39

Difference-in-Difference Regression: Spillover

Clustered standard errors, corrected for small number of clusters; * Significant at 10%. ** Significant at 5%. *** Significant at 1%.

The Southern Tagalog Arterial Road (STAR) Philippines, Manila

表 8 フィリピンの STAR 高速道路の影響のない地域と比較した事業税の増加額

(単位:100万ペソ)

	<i>t</i> ₋₂	<i>t</i> ₋₁	t_0	<i>t</i> ₊₁	t ₊₂	t ₊₃	<i>t</i> +4以降
Lipa 市	134.36	173.50	249.70	184.47	191.81	257.35	371.93
Ibaan 市	5.84	7.04	7.97	6.80	5.46	10.05	12.94
Batangas 市	490.90	622.65	652.83	637.89	599.49	742.28	1208.61

(出所) Yoshino and Pontines (2015)より筆者作成

Uzbekistan: Railway

Regions	Out	Pre-	Post-	Diffe
	come	railway	railway	rence
		period	period	
Non-	GDP	8.3	8.5	0.2
affected	growth			
group	rate			
Affected	GDP	7.2	9.4	2.2
Group	growth			
	rate			

Tibet Railway

Source	SS	df	MS	Number of obs =	72
				F(6, 65) =	7.73
Model	8.28173613	6	1.38028935	Prob > F =	0.0000
Residual	11.6075298	65	.178577382	R-squared =	0.4164
				Adj R-squared =	0.3625
Total	19.8892659	71	.280130506	Root MSE =	. 42258

difference1	Coef.	Std. Err.	t	P≻ t	[95% Conf.	Interval]
govspending1	.0118414	.0028554	4.15	0.000	.0061389	.017544
population1	.0034233	.0013616	2.51	0.014	.000704	.0061426
population0	0102002	.0037957	-2.69	0.009	0177808	0026196
govspending0	0206841	.0055783	-3.71	0.000	0318248	0095435
Dummy	.0924005	.2097625	0.44	0.661	3265242	.5113252
Dummy2	.061252	.1937049	0.32	0.753	3256034	.4481074
_cons	. 4984291	.2045091	2.44	0.018	.0899961	. 906862

Japanese Bullet Train

Japanese Bullet Train Estimation results by group of prefectures

Note: Numbers for tax revenue amount adjusted for CPI with base year 1982. Pre-shinkansen construction period covers years from 1982 to 1990. Non-affected groups include rest of the prefectures Treated groups: Group 2: Kagoshima, Kumamoto Group 3: Kagoshima, Kumamoto, Fukuoka Group 5: Kagoshima, Kumamoto, Fukuoka, Qita, Miyazaki

Group 7: Kagoshima, Kumamoto, Fukuoka, Oita, Miyazaki, Saga, Nagasaki Group Con.: Kagoshima, Kumamoto, Fukuoka, Yamaguchi, Hiroshima, Okayama, Hyogo, Osaka

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1st PHASE OF OPERATION period $\{2004-2010\}$, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3

COMPOSITION OF GROUPS

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	-4772.54					Kagoshima	Kagoshima
	[-0.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.8952514*	5.8957045*	5.896112*	5.8953585*	5.8629645*	Groun3	Oita
	[1.95]	[1.95]	[1.95]	[1.95]	[1.91]	Kagoshima	Miyazaki
Treatment3		-15947.8				Kumomoto	Ινιιγαζακί
		[-0.87]				Fulmaniolo	
Treatment5			-13250.4			Fukuoka	
			[-1.06]				
Treatment7				-6883.09			GroupCon
				[-0.7]		Group7	Kaqoshima
TreatmentCon					-28030.8	Kagoshima	Kumamoto
					[-0.65]	Kumamoto	Fukuoka
Constant	-665679	-665418	-665323	-665358	-658553	Fulmente	
	[-1.35]	[-1.35]	[-1.35]	[-1.35]	[-1.32]	FUKUOKa	Usaka
						Oita	Hyogo
Ν	799	799	799	799	799	Miyazaki	Okayama
R2	0.269215	0.269281	0.269291	0.269241	0.269779	Saga	Hiroshima
<u>F</u>	1.934589	2.106448	2.074548	2.100607	8.497174	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p< 1; ** p< 05; *** p< 01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period {2011-2013}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1 19	1	1	1	1	1	2	2	2	22	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9 94	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	5	6	7	8	9	0	1	2	34	5	6	7	8	9	0	1	2	3
		-								_	-	-	•	-	-	•	•	_	_		-	•	-	-	-	-			

COMPOSITION OF GROUPS

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	72330.012**					Kagoshima	Kagoshima
	[2.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***	Group3	Oita
	[3.13]	[3.14]	[3.14]	[3.14]	[3.07]	Kagoshima	Miyazaki
Treatment3		104664.34*				Kumamoto	ini jazani
		[2]				Fukuoka	
Treatment5			82729.673**			TURUORA	
			[2.1]				
Treatment7				80998.365**			GroupCon
T ()0				[2.34]	470000	Group7	Kagoshima
TreatmentCon					179632	Kagoshima	Kumamoto
Constant	EC0122 00**	E70717 00**	E7101E 07**	E76067 E6**	[1.00] 640100 07**	Kumamoto	Fukuoka
Constant	-00100.90	-0/0/4/.20	-0/4240.0/ [0.00]	0C.10001C-	-042130.07	Fukuoka	Osaka
	[-2.07]	[-2.00]	[-2.00]	[-2.09]	[-2.1]	Oita	Hyogo
N	611	611	611	611	611	Miyazaki	Okayama
R2	0.350653	0.352058	0.352144	0.352874	0.364088	Saga	Hiroshima
F	5.062509	5.486197	5.351791	5.431088	16.55518	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Expected rates of return on project bonds vs. benchmark yield

	No Effor	ts	Efforts to improve				
No Efforts	(50,	r)	(50,	αr)			
	Operating Company	Investors	Operating Company	Investors			
Efforts to	(100,	r)	(100,	αr)			
improve	Operating Company	Investors	Operating Company	Investors			

ADBInstitute

Public Private Partnership (PPP)

- (1) Risk sharing between private and public sector
- → Collect Domestic Savings
- → long term savings (insurance, pension funds)
- (2) Incentive to cut costs and to increase revenue
 → Avoid political intervention
 - Bonus payment for employees who run infrastructure
- (3) Indirect Effects are important (tourism, manufacturing, fishing, services) What is the purpose of infrastructure ?

Risks Associated with Infrastructure

- 1. Risk sharing between private and public
- 2, too much reliance on overseas' money
 - \rightarrow future burden for the country
- 3. Loans vs Investment
- 4, bankable projects or not?
- 5、Various Risks (political risk, operational risk, demand risk, ex-post risk, maintenance risk, earthquakes, natural disaster risk)

Possible Solutions Start up businesses, fisheries

Naryski Teshino - Salhoko Kaji - Editori

Hometown Investment Trust Funds

A State Way to Supply Real Capital

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

Yoshino, Naoyuki; Kaji Sahoko (Eds.) 2013, IX, 98 p. 41 illus.,20 illus. in color

Available Formats:

ebook Hardcover Springer

Japan, Cambodia Vietnam, Peru

Bank-based SME financing and regional financing to riskier borrowers

- 1. Bank Loans to relatively safer borrower
- 2. Hometown Investment Trust Funds/
- **E-Finance, Internet financing**

Investment in SMEs and start up businesses

すべてを失い再起を断念しそうになった時の

Agricultural Funds Beans and Wine

Challenges

Y=AF(N, Kp, Kg)

Enhancing Infrastructure Investment and Financial Stability Maintain macroeconomic and financial stability Create an exchange rate mechanism Recycle savings into Investments Maintain fiscal soundness Avoid future crises and contagion

Supporting Equitable Growth Improve income equality (Education, Tax System, Equal Opportunity)

Promoting Competitiveness and Innovation Strengthen competitiveness of the agricultural sector, manufacturing and services sectors, SMEs and large firms

Protecting the Environment

Reduce CO² emissions, Coal, Technology, Water supply, Sanitation

Enabling Factors

Developing Infrastructure Finance

- Develop efficient markets in support of infrastructure and the real sector Increase effectiveness of financial intermediation
- Improve recycling of regional savings into regional infrastructure investment
- Harnessing Human Capital
- **Education and Training**
- **Building Seamless Connectivity**
 - Y=C+I+G+EXP-IMP ←Investment, Exports and Imports Infrastructure Investment and AS Y=AF(N, Kp, Kg)
- **Strengthening Governance**
- Institutional Architecture

Effect of Infrastructure investment on Aggregate Demand and Aggregate Supply

References

Yoshino, Naoyuki (2010) "Financing Transport Infrastructure Investment", OECD (ed.), Southeast Asian Economic Outlook 2010, OECD Publishing.

Yoshino, Naoyuki (2012) "Global Imbalances and the Development of Capital Flows among Asian Countries", OECD Journal: Financial Market Trends, Vol. 2012/1

Yoshino, Naoyuki and Masaki Nakahigashi (2004) "The Role of Infrastructure in Economic Development", ICFAI Journal of Managerial Economics, 2, pp. 7-24

Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", Asian Development Bank Institute (ADBI) Working Paper, forthcoming.

Yoshino, Naoyuki, Victor Pontines and Umid Abidhadjaev (2015) "Impact Evaluation of Infrastructure Provision on Public Finance and Economic Performance: Empirical Evidence from Philippines and Uzbekistan", Asian Development Bank Institute (ADBI), Working Paper, forthcoming