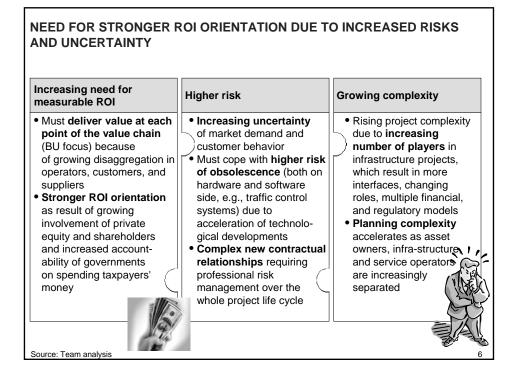
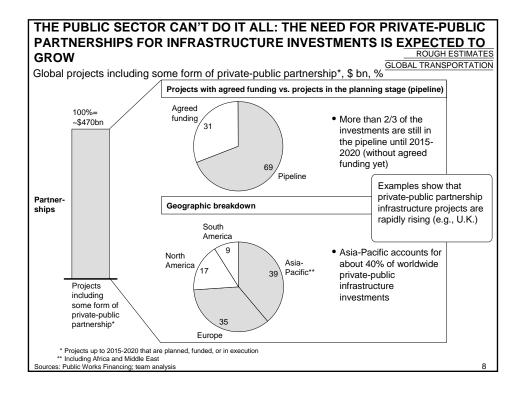
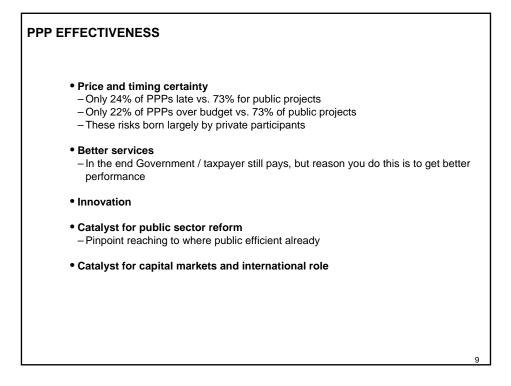
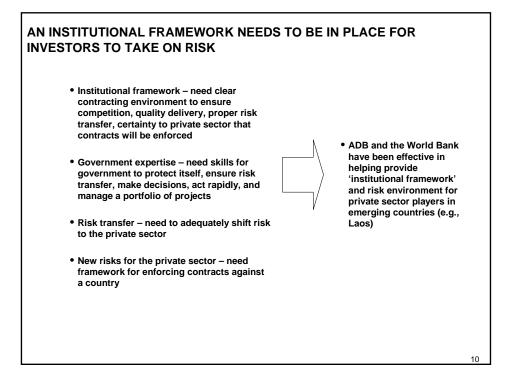
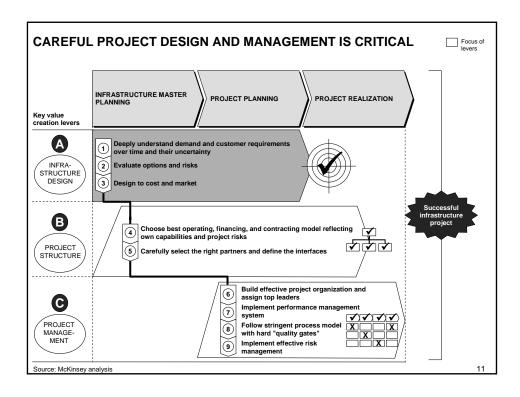

EXECUTIVE SUMMARY


- 1. There is an enormous need for infrastructure investment in Asia...
- Asia needs to spend at least US\$165 billion annually on infrastructure from 2006 to 2010
- There are 4 types of infrastructure assets regulated assets (e.g., electricity, water); transportation assets; long-term assets (e.g., power generation plant with long-term contracts for input); social infrastructure. Each has its own advantages and risks
- 2. The public sector can't do it by itself governments can't fund investments as they traditionally have and infrastructure investments are more efficient and effective when done in cooperation with the private sector - a rapid increase in private-public partnerships (PPPs) is expected
- 3. But creating value from infrastructure investments is getting harder
- Rapid changes in the market make focusing on ROI imperative, and increasing project risks and complexity
- We estimate that the difference between 'doing it well' versus 'average performance' today is worth between \$16-20 billion a year
- 4. Getting it right will require...
- An institutional framework for investors to take on risk
- Careful project design, structuring, and management


	Regulated assets	Transportation assets	Long-term contracted	Social infrastructure
Example	 High voltage electricity transmission Local distribution of electricity and gas Long distance gas transmission Water and waste water 	 Toll roads, bridges, and tunnels Airports Ports 	 Power generation plant with power purchase agreement and long-term contracts for input 	SchoolsHospitalsPrisons
Pros	 Attractive ROEs (especially in the U.S.) Returns have attractive characteristics Low volatility Positive correlation with inflation Low correlation with public equities Assets have high barriers to entry 	 Few competitors Variation from asset to asset but underlying cash flows can be attractive, particularly when underlying assets are monopolistic 	 Potentially higher returns than other sub-assets Contracts may transform cash flows of long-term contracted assets (such as power generation) and generate stable returns Established risk management structures exist (e.g., credit derivatives) Somewhat smaller than regulated assets or transportation assets 	 Depending on the project, cash flows me be fully contracted wit little operating risk Growing market (particularly in the UK Somewhat smaller the regulated assets or transportation assets
Cons	Typically very large investments Regulatory risk Upside limited by regulation Generally lower returns than other categories Regulatory process is complicated, time consuming, and expensive	 Often very large investments Revenue based on usage levels, which can fluctuate Risk of competition (e.g., alternative routes or modes of transportation) 	Ũ	 Government as counterparty Political and communication sensitivity







Example	Budget overruns € bn	Delays and start-up problems	Incorrect capacity & revenue plans	Total value lost vs. plar €bn
Eurotunnel	7.5	 6 months delay 18 months of unreliable service after opening 	• Overestimated market share gain in freight and pax by 200%	~7.5
High-Speed Rail Frankfurt-Cologne	4.5 6.0	 1 year delay of construction Legal and technical issues 	Unforeseen capped govern- ment funding	~1.5
Betuwe Line NL (cargo rail)	2.3 > 5.0	 1.5* year delay of construction Technology choices still not finalized 	 Annual revenues shortfall of €20mn 	~3.0
Kuala Lumpur	2.0 3.5	 Initial issues with connectivity to downtown area Complaints about facility hygiene levels 	 Handles only ~60% of current capacity Losing market share to Singapore 	~1.5

Sublevers	Key success factors	
1 Deeply understand demand and custo- mer requirements over time and their uncertainty	 Systematic assessment of current and future traffic flows by segment Understanding of (end) customer requirements and drivers influencing modal split and transport buying decision Determination of willingness to pay/price elasticity, including competitive dynamics Developing robust end-game customer choice and traffic-flow scenarios 	
2 Evaluate options and risks	 Comprehensive overview of options (including not to invest) Integrate project into existing infrastructure and network Evaluate risk business case and reliability/availability of alternatives Select modular or step-based approach to match capacity and demand developmen over time Robust scenario-based approach to handle uncertainty and external shocks 	
3 Design to cost and market	 Optimize operational processes greenfield before designing facility Break down target costs to individual modules applying benchmarks Generate broad, innovative idea landscape (cross-functional workshops including suppliers, experts, and customers) Systematically capture purchasing potential 	

Sublevers	Key success factors
4 Choose best operating, financing, and contracting model reflecting own capabilities and project risks	 Structure project models to minimize life-cycle costs and minimize risk exposure
5 Carefully select the right partners and define the interfaces	 Define the required competencies and partner characteristics Systematically screen market and select most suitable partners Create well-defined interfaces, contracting and steering/incentive mechanisms betwee the project partners
Structure pro- ject and set up organization	

ublevers	Key success factors
6 Build effective project organization and assign top leaders	 Establish most effective project organization with clear tasks, incentives, and accountabilities Determine required level of top management attention and qualification of leaders Invest in talent and continuously build capabilities
7 Implement perfor- mance management system	 Increase transparency about expected people behaviors (focus on value-added activities) and results Implement a performance assessment process, to be used as a decision-supporting tool for personal development and incentives Develop coherent career paths
Follow stringent process model with hard "quality gates"	 Define and follow clear project execution process with well-defined phases and decision points (milestones, quality gates) "Hard" interface between project client and (internal) project contractor Determine potential bottleneck steps in key processes and design robust fallback options Implement steering processes with clear responsibilities and escalation hierarchies Ensure adequate resource planning
Implement effective risk management	 Establish (controlling) systems to create continuous transparency on cost-to-complete Cost Time Output deviations Continuously monitor, quantify, and manage risks during execution Institutionalize effective risk management at different organizational levels allowing fast and flexible response to changes in risk