OCEAN THERMAL ENERGY CONVERSION (OTEC) Challenges and Opportunities

Gérard Nihous Associate Professor Dept. of Ocean and Resources engineering University of Hawaii

OTEC in a Nutshell

- Heat engine using seawater of different temperatures found at different depths.
- Low thermodynamic efficiencies (≈ 3%) require large physical systems.
- Deep water environment.
- Most of the resource is located offshore.
- Some key components are not modular.
- Capital intensive technology
- Technology development difficult

WORLDWIDE OTEC THERMAL RESOURCE Temperature difference between 20 m and 1000 m depths (Nihous, G.C., 2, 043104, *JRSE*, 2010; from NODC WOA05 database)

Temperature Difference [C] @ 20 *m and 1000 m=Top*

January

Temperature Difference [C] @ 20 *m and 1000 m=Top*

February

Temperature Difference [C] @ 20 *m and 1000 m=Top*

March

Temperature Difference [C] @ 20 *m and 1000 m=Top*

April

Temperature Difference [C] @ 20 *m and 1000 m=Top*

May

Temperature Difference [C] @ 20 *m and 1000 m=Top*

June

Temperature Difference [C] @ 20 *m and 1000 m=Top*

July

Temperature Difference [C] @ 20 m and 1000 m=Top

August

Temperature Difference [C] @ 20 m and 1000 m=Top

September

Temperature Difference [C] @ 20 m and 1000 m=Top

October

Temperature Difference [C] @ Dummy=Top

November

Temperature Difference [C] @ 20 m and 1000 m=Top

December

- OTEC is one of the few renewable energy technologies with *baseload* (high capacity factor) potential.
- An oceanic area of over 100 million km² is concerned.
- The geopolitical distribution of OTEC resources is not ideal to promote technological development.

A simplified OTEC process diagram

- OTEC operates with a marginal thermal resource.
- It is quite sensitive to the stability of the thermal resource. 1°C change in $\delta T \approx 15\% P_{net}!$
- It is characterized by a high seawater flow rate intensity (of order 7 m³/s per net MW).
- The Cold Water Pipe represents a technological frontier.

210 kW OC-OTEC Experimental Plant (Keahole Pt.)

OTEC THERMAL RESOURCE IN HAWAII Temperature difference between 20 m and 1000 m depths (HYCOM +NCODA Simulations): *signal amplitude*

Georges Claude, Cuba (1929)

Cold Water Pipe At-sea Test, Hawaii (1983)

Cold Water Pipe At-sea Test, Hawaii (1983)

Contraction of the local division of the loc

ALL ALL AND

a second

Cold Water Pipe At-sea Test, Hawaii (1983)

No. of Concession, and a second distance of the

Penstock pipe from Hoover Dam construction (1934)

More 'Twists' from the High Seawater Flow Rate Intensity of OTEC

- Modeling the evolution of effluents from large OTEC plants is challenging and computationally demanding (e.g., ongoing work by Jia *et al.*, University of Hawaii).
- The tantalizing possibility of an opportunistic boost of the marine food web should be investigated.
- Global OTEC resources appear to be 'self-limited' from interactions with the thermal structure of the water column (ongoing work by Rajagopalan and Nihous, University of Hawaii).
- A global OTEC production of 5 to 10 TW would have little impact, although the maximum is much greater.

Jia et al., IPRC, University of Hawaii, manuscript under preparation

LONGITUDE : 158.2W(201.8) LATITUDE : 21.2N

Vertical profile of dye at the mass source grid cell for the base experiment. Thick black line indicates the density of mixed warm and cold water intakes before discharge.

Jia et al., IPRC, University of Hawaii, manuscript under preparation

DEPTH (m) : 100 to 250 TIME : 01-APR-2011 12:00

'Integrated Dye Concentration (%)'

Vertically integrated dye concentration. Arrows represent vertically averaged flow in the same depth range (100-250 m). Base case flow rates.

Rajagopalan and Nihous, ORE, University of Hawaii, manuscript submitted to *Renewable Energy* (February 2012)

OTEC Power density (kW/km²) at global maximum No interaction

Rajagopalan and Nihous, ORE, University of Hawaii, manuscript submitted to *Renewable Energy* (February 2012)

OTEC Power density (kW/km²) at global maximum Full coupling

OTEC Cost Summary

- The technological development of OTEC is an 'unfinished business'.
- Scaled-up (and scalable) floating pilot systems must provide operational record.
- At a cost of 200 to 300 millions (\$), these 5 to 10 MW systems are not attractive in a market-driven context.
- Governmental 'willpower' or a concerted effort from multiple stakeholders are likely necessary to move forward.