Energy and Agriculture

Gary Blumenthal World Perspectives, Inc.

Opening Thoughts

- 1. Energy is <u>**not**</u> funny.
- 2. Defies common assumptions.
- *3. It is manageable:*

"Agriculture and Rural Communities are Resilient to High Energy Costs" <u>Amber</u> <u>Waves</u>, April 2006, USDA/ERS

Energy and the Agriculture Sector

Overview

Agriculture and energy use: the largest user of <u>energy</u> – solar energy. Changes by geography (pests, irrigation, etc.) Conservation: efforts underway since the first oil crisis of the early 1970's. Impact: Food quality and quantity are correlated to energy availability.

Labor Trumps Energy

 Australia sends shrimp to China for processing and shipment back to Australia

 U.S. Congress moves to block chicken sent to China for processing and re-importation (AI)

Farm-Level Impacts

And Adjustments

NEW CONTRACTOR AND A CARDEN AND A CARDEN AND A CARD AND A CARD A CARD

Agriculture as a User of Energy

More Fossil Fuel, Less Relative Impact

- Fertilizer (natural gas) is more than double the cost per acre as tractor fuel.
- Green revolution agriculture is more "hydrocarbon" intensive, but scale yields savings.
- Savings in energy expenditures by rich countries in the agrifood sector has little impact in the larger economy.

Farmers Feel Higher Energy Prices

- Farm fuel costs +113% versus four years ago.
- Greenhouse production is particularly impacted.
- Congress has \$1.5 billion relief to farmers but rejected \$100 per taxpayer.

World Perspectives,

International and the second second

Energy's Importance

Energy as Share of Cost of Production (USA)

Some Elasticity in Gas/Fertilizer Use – but in the U.S.

Varied Energy Factors

 Natural gas pricing varies by country.

 Commercial energy consumption in agriculture varies
greatly (relatively high in China, Malaysia, Thailand and Indonesia -Ramani, et al).

World Perspectives, Inc.

Agriculture's Energy Share: Developed vs. Developing

When hydrocarbons are cheap, farmers may over-apply fertilizer, when they are expensive – they cut back.

 Developing countries apply fertilizer suboptimally due to cost.

Energy Ratio of Marketed Product Value		
Mechanized Pennsylvania	Amish Farm	
Dairy Farm		
0.69	0.14-0.29	
Source: Marty Bender, The Land Institute		

Similarities in N. America

ander an der eine der Alte Basse 🖬 (1997) 20. der Alter andere sterken der Basse ander Basse 🖬 State Basse ander State Basse ander B

Staple Crop Exemption?

Rice Yields Do Not Change with Oil Price

Agriculture as a Producer of Energy

Production Costs of Biofuels

nie z nakora z zwiele 1948 kara 🖉 zwie 20 a karakterie wie za skalenie zwie inzerie 🕸 za 🖉 🖬 zwie zwiele za skalenie zwie inzerie zwiele zwiele

Biofuel pr	oduction	Ethanol from			Biodiesel from			
cos	ts	Wheat Maize S/cane S/beet		S/beet	Veg. oil			
<u> </u>	USA	0.545	0.289			0.5	49	
	CAN	0.563	0.335			0.4	55	
\$ / iue	EU-15	0.573	0.448		0.560	0.6	07	
SU TS	POL	0.530	0.337		0.546	0.7	25	
	BRA			0.219		0.5	68	
Petrol-ba	sed fuel	Gasoline (IFP) ¹⁾		fuel Gasoline (IFP) ¹⁾		D	iesel (IFP)	1)
pric	96	M/ tox	W/o tax		M//tox	M/a tox	PSC	
	63	vv/lax	W/O lax	ROU	vv/lax	VV/O lax	NOC	
	USA	0.540	0.384	0.311	0.570	0.373	0.301	
l of	USA CAN	0.540 0.680	0.384 0.401	0.311 0.311	0.570 0.680	0.373 0.391	0.301	
\$ / I of uel	USA CAN EU-15	0.540 0.680 1.316	0.384 0.401 0.406	0.311 0.311 0.311 0.311	0.570 0.680 1.286	0.373 0.391 0.396	0.301 0.301 0.301	
JS\$ / I of fuel	USA CAN EU-15 POL	0.540 0.680 1.316 1.200	0.384 0.401 0.406 0.392	0.311 0.311 0.311 0.311 0.311	0.570 0.680 1.286 1.090	0.373 0.391 0.396 0.382	0.301 0.301 0.301 0.301 0.301	

NORLD

ERSPECTIVE

Oil Price Thresholds

Biofuel type / feedstock

Brazilian Sugar Ethanol

Biofuel type / feedstock

USA Corn Based Ethanol

Biofuel type / feedstock

Canadian Canola Biodiesel

Limited Ability for Agriculture to Fuel the World

- Brazil = 22%of fuel on 3% of area, but low per capita fuel use.
- US and Canada would use 1/3 of land area for a 10% renewable mandate. EU would use

2/3 of ag area

to meet 10%

goal.

National Policy Support for Biofuels

- Australia: Goal is 1% renewable by 2010; maximum blend is 10%. Subsidies and grants to plant construction. Tax breaks switched to subsidies with excise tax phase-in in out years.
- Canada: Goal of 34% E10 by 2035 and 500 million liters of biodiesel consumed. Construction loans and excise tax exemptions are granted.
- **China:** E10 mandates in some areas and subsidies provided to four plants thus far.
- **Japan:** E3 permitted and goal of 500 million liters by 2010.
- **Thailand:** Tax breaks and other incentives to use cassava, sugar and rice in reaching 10% ethanol goal.
- USA: Goal of 7.5 billion gallons renewable by 2012 will be reached by 2007 and a much higher level will get enacted. "12 bil. gals by 2012 has no impact on food"

OECD

Maize

OECD

Vegetable oil

OECD

White sugar

Energy Outlook

Adjustments

No-Tillage (saves 3.5 gallons fuel/acre)

Note: Agricultural residue competes as a household cooking fuel in poor countries.

- Low pressure irrigation (saves \$9-41/acre over medium-high pressure systems)
- Precision agriculture saves \$13 per acre.
- Biomass gasifiers and digesters
- Symbiotic use of Livestock and Crops
- Switch to lower energy crops

Impacts Further Along the Supply Chain

NUMBER AND A DESCRIPTION OF A DESCRIPTION

Food Processors and Retailers

- CIES: 299 executives in 42 countries.
- Health and nutrition moved up from 5th to 3rd place in 2006.
- Competition #1: energy cost compounds price pressure. Difficulty passing it along and so innovation and differentiation is the goal; consolidation is a result.

Investor Perspectives

- 28 executives briefed Consumer Analyst Group of NY (CAGNY) in February.
- Energy cost was mentioned but not in the summarized remarks of major companies like Tysons, Kraft, Pepsico, Sara Lee, Campbell's, Cadbury Schweppes.

USA Food Processing Sector

ander andere einen der Teil bereitig und der Anteren eine bereichen Werten bereichen Bereich andere einen einen

Meeting Agendas as Proxies

- Grocery Manufacturer's Association (CEO's): celebrity speakers
- Food Products Association (technical): AI, BioSecurity, Labeling
- Food Marketing Institute (grocery stores):
 - 2003 Publication
 - Energy Conference in September
 - 💶 Initiated Energy Star 🛠 program with USG

EU Food Processing Sector

na a sun a su a cara da la cara da la cara da cara da cara cara cara da cara da cara da cara da cara da cara d

CIAA Conference Programme:

- Food and Health
- Food Safety
- Obesity: Diet, Physical Activity
- CIAA Position on Biofuels:
 - Food companies need energy
 - Agriculture going to energy competes with food

Energy not amongst the eight stated priorities of the sixmonth Austrian presidency.

Food Processing Overview

ander an der eine eine der Alte Tasse 🖉 ander zum der Anterne eine eine Anterne Konne 🖬 der Anterne Anter

- Since 5,000 BC, energy used to enhance quality and health (preservation) of food.
- Today, 40% of the value added is through energy intensive processes (thermal/preservation).
- Food processing is dwarfed as energy consumer by other industries (refining, chemicals, paper, steel, etc.).
- Transportation: Some rationalization, but travels farther.
- Food service consolidates energy use (deep freezer).
- IT: better S&D data = energy savings.

Thermal (energy) processing reduces use of additives, and waste – fresh foods incur 5x more loss.

Sector Use of Energy: Two Views

 Japan's food processing sector consumes 10% of all manufacturing energy on a shipping volume basis;

 But just 2% in terms of gross manufacturing energy.

Energy Impacts on Food

- Kraft: +\$800 million this year = -11% annual earnings.
- Danone: -0.75% operating income FH.
- S&P: Most companies offset by cutting other costs.
- Malacca Poultry Processor: No reaction.

Most Energy Intensive

Energy Use by Food Processing Subsector				
Subsector	Share of Sector's E nergy Inputs	Subsector's Revenues (\$ mil.)	Subsector's E nergy Costs (\$ mil)	Energy as share of Revenues
Wet Corn Milling	15%	7,860	Fuel: 469 Electricity: 265	9%
Beet Sugar	7%	2,256	Fuel: 94 Electricity: 22	5%
Soybean Oil Mills	5%	12,783	Fuel: 192 Electricity: 97	2.2%
Malt Beverages	5%	17,601	Fuel: 113 Electricity: 123	1.3%
Meat Packing	5%	56,481	Fuel: 158 Electricity: 216	0.06%
Canned Fruit and Vegetables	5%	18,961	Fuel: 190 Electricity: 143	1.7%
Frozen Fruits and Vegetables	4%	9,035	Fuel: 129 Electricity: 146	1.4%
Bread, Cake and Related	3%	26,617	Fuel: 179 Electricity: 222	1.5%

UNIDO Energy Conservation in Food Processing Industry

42 Page; supported by GoJ
Survey of energy use: Baseline and efficiency measures

Control of the Contro

EU Food, Drink and Milk Industries January 2006

- 650 page inventory including energy use and saving strategies.
 - Process heating = 29% of energy use
 - Process cooling = 16% of energy use
- Major Users of Energy:
 - Extruders
 - Centrifugation

Vorld Perspectives,

Energy Use by Sausages			
	Salami	Other Sausages	
Electricity		1300	
Heat	1240	450	
Total Energy	Unknown	1750	

Energy Use by Frozen Vegetables		
Product	kWh _e /t	
Spinach	0	
Cauliflowers	1	
Peas	4	
Sprouts	4	
Beans	5	
Carrots	8	

Regional Energy Initiative

UNIDO vs. EU: Japan's beer making requires slightly less energy (12 kWh/hl) than does Europe's.

Measured Brewery Use of Energy		
	kWh/hl	
Brewhouse	13.89-22.22	
Bottling	10.56-16.11	
Kegging		
Process Water		
Service Water		
Miscellaneous	26.39	
Total	24.44-64.72	
Source: EU		

WORLD PERSPECTIVES INC.

CONTRACTOR AND A CONTRACTOR AND A

Energy Saving Strategies

<u>Government</u>

Set standards, taxes, subsidies, audits, counseling

- Subsector Competition Approach (poultry)
- Regional Industry Focus Approach (wine)

<u>Industry</u>

- Energy Savings Technologies:
 - Waste Utilization (i.e. heat recovery; cooking oil)
 - Cold processes and electron beam
 - Atmospheric packaging
 - Operation rate/speed of lines
 - Replace recirculating chillers with cooling towers
 - Multiple effect evaporators
 - Thermal vapor recompression

Impacts on Food Consumption

INTERNAL DE LA COMPANIE COMPANIE A LA COMPANIE COMPANIE COMPANIE A COMPANIE DE LA COMPANIE DE LA COMPANIE DE LA

Oil Impact on Caloric Intake

Oil, Income and Protein Consumption

TERSPECTIN

Conclusions

Energy costs have some limited impacts on agriculture.

The sector adapts to those cost structures.

 Biofuels are a tricky component in the sector's future.

Thank you!